Separable Approximations and Decomposition Methods for the Augmented Lagrangian
نویسندگان
چکیده
In this paper we study decomposition methods based on separable approximations for minimizing the augmented Lagrangian. In particular, we study and compare the Diagonal Quadratic Approximation Method (DQAM) of Mulvey and Ruszczyński [13] and the Parallel Coordinate Descent Method (PCDM) of Richtárik and Takáč [23]. We show that the two methods are equivalent for feasibility problems up to the selection of a single step-size parameter. Furthermore, we prove an improved complexity bound for PCDM under strong convexity, and show that this bound is at least 8(L′/L̄)(ω−1)2 times better than the best known bound for DQAM, where ω is the degree of partial separability and L′ and L̄ are the maximum and average of the block Lipschitz constants of the gradient of the quadratic penalty appearing in the augmented Lagrangian.
منابع مشابه
Finite Element Solutions of Cantilever and Fixed Actuator Beams Using Augmented Lagrangian Methods
In this paper we develop a numerical procedure using finite element and augmented Lagrangian meth-ods that simulates electro-mechanical pull-in states of both cantilever and fixed beams in microelectromechanical systems (MEMS) switches. We devise the augmented Lagrangian methods for the well-known Euler-Bernoulli beam equation which also takes into consideration of the fringing effect of electr...
متن کاملAn Asymmetric Proximal Decomposition Method for Convex Programming with Linearly Coupling Constraints
The problems studied are the separable variational inequalities with linearly coupling constraints. Some existing decomposition methods are very problem specific, and the computation load is quite costly. Combining the ideas of proximal point algorithm PPA and augmented Lagrangian method ALM , we propose an asymmetric proximal decomposition method AsPDM to solve a wide variety separable problem...
متن کاملAn interior-point Lagrangian decomposition method for separable convex optimization
In this paper we propose a distributed algorithm for solving large-scale separable convex problems using Lagrangian dual decomposition and the interior-point framework. By adding self-concordant barrier terms to the ordinary Lagrangian we prove under mild assumptions that the corresponding family of augmented dual functions is self-concordant. This makes it possible to efficiently use the Newto...
متن کاملAn Augmented Lagrangian Based Algorithm for Distributed NonConvex Optimization
This paper is about distributed derivative-based algorithms for solving optimization problems with a separable (potentially nonconvex) objective function and coupled affine constraints. A parallelizable method is proposed that combines ideas from the fields of sequential quadratic programming and augmented Lagrangian algorithms. The method negotiates shared dual variables that may be interprete...
متن کاملWorking Paper on Augmented Lagrangian Decomposition Methods for Multistage Stochastic Programs on Augmented Lagrangian Decomposition Methods for Multistage Stochastic Programs on Augmented Lagrangian Decomposition Methods for Multistage Stochastic Programs
A general decomposition framework for large convex optimization problems based on augmented Lagrangians is described. The approach is then applied to multistage stochastic programming problems in two di erent ways: by decomposing the problem into scenarios and by decomposing it into nodes corresponding to stages. Theoretical convergence properties of the two approaches are derived and a computa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optimization Methods and Software
دوره 30 شماره
صفحات -
تاریخ انتشار 2015